RTP: A TRANSPORT LAYER IMPLEMENTATION PROJECT

Brad Richards
Computer Science Department
Vassar College
Poughkeepsie, NY 12604
richards@cs.vassar.edu

ABSTRACT

This paper describes a project for use in computer networks courses,
implementation of the Reliable Transport Protocol (RTP), that gives students
hands-on experience with network protocol concepts and construction.

L ecture topics such as the protocol layering model, sliding window protocols,
packet formats and headers, techniques for establishing and closing connections,
and UDP sockets programming are all driven home viafirst-hand experience.
Students gain general programming and debugging experience on arealistic,
event-driven, asynchronous application as well, and necessarily exercise their
knowledge of algorithms and data structures.

1. INTRODUCTION

With the phenomenal growth of the Internet, it isbecoming increasingly important to
expose undergraduate computer science majors to computer networking techniques and
technologies. While many small colleges offer an upper-level networking course, aglance at
sample syllabi showsthat most fall firmly on the academic side of the spectrum, consisting
primarily of textbook exercises supplemented with some simple sockets programming. This
paper describesastudent project, theimplementation of the Reliable Transport Protocol (RTP),
that has been used over the course of three semestersto increase the hands-on component of
the coursein an effort to both engage students more fully and communi cate the key concepts
more effectively. The scope of theimplementation project also aignsour computer networks
course more closely with other upper-level project-based courses such as compilers and
graphics.

RTP implements reliable, connection-oriented datagram service atop UDP. Students
tackling the project gain detailed knowledge of reliable diding-window transmission protocols,
packet layouts and details, the protocol stack layering model, techniquesfor establishing and
closing connections, and UDP socketsprogramming. They learntheva ue of protocol standards

'Software is used to make UDP appear significantly less reliable.

134 JCSC 16,4 (May 2001)
© 2001 by the Consortium for Computing in Small Colleges

CCSC: Northeastern Conference

as well. Students are given a detailed description of the RTP protocol, and those who
implement it correctly are rewarded with interoperability — their RTP layer communicates with
other correct implementations, dramatically demonstrating theval ue of precise specifications.
Theproject also pullstogether data structures and programming techniquesfrom acrossthe
curriculum, making it an excellent capstone experience.

Currently, 48 students over three semesters have attempted RTP implementations, and
the results have been extremely encouraging. Most have implemented at least the bulk of the
required functionality, and asurprising number have surpassed the requirements and added
additional features. Student feedback has shown that the project was perceived as challenging
but rewarding, and severa students havelanded industry jobs primarily on the basisof their
RTP experiences.

Section 2 givesan overview of our computer networks courseand putsthe RTP project
into context. The RTP protocol isdescribed in more detail in Sections 3 and 4. Our experiences
are discussed in Section 5, and conclusions and guidelines are given in Section 6.

2. COURSE OVERVIEW

The networks course at Vassar College uses Tanenbaum’ s Computer Networks™ text
[5], supplemented with material from other textbooks [4], references[2], and standards
specificationg 1]. Threesmall assgnmentsin thefirst half of the semester lay the groundwork
for the RTP project, which takes most of the second half of the semester. Thefirst of these
refreshes students? knowledge of command-line arguments, and introduces UNIX sgndsand
signal handlers. (Students will later use a SI GALRMhandler to periodically service RTP
connections.) The second assignment familiarizes students with the details of reliable
communication at the Data-Link layer by requiring that they debug adiding-window protocol
running in asimulator[3]. This protocol will later be incorporated into their RTP project.
Students are introduced to basic socket programming with asimple client-server program as
part of their third assgnment. TheRTP project itsalf isbrokeninto three pieces: A design phase,
afive-week implementation phase, and ashort find assgnment inwhich studentsimplement an
application atop RTP.

The courseisan upper-level dectiveand has been taught threetimesinitscurrent form,
most recently in the Fall of 2000. Before taking the networks course, students must
successfully complete CS1, CS2, and the third coursein our core sequence (amoreinvolved
design and implementation course). Students taking networks have rated it highly overall,
despite its well-deserved reputation for requiring an onerous amount of work.

135

JCSC 16, 4 (May 2001)

3. RELIABLE TRANSPORT PROTOCOL

Whilethe RTP protocol offersreliable, connection-oriented datagram service, the details
of this service have been kept as simple as possible to reduce the scope of the project.?
Connections are established viaatraditional three-way handshake, with initial sequence
numbers set from the system clock. The send and recelve window sizesremain fixed for the
duration of a connection. Connections are closed after an exchange of disconnect request
messages, or dueto inactivity. The RTP specification statesthat data arriving after adisconnect
request has been sent can beignored, and that unddivered datatill in the receivewindow when
adisconnect request arrivesneed not beddivered. Thisisan unredistic gpproach, but smplifies
the implementation significantly. The interface consists of just the seven functions described
below.

3.1 Interface Routines

Each of these routinesreturnsavalue of typeEr r or , an enumerated type containing
entriesfor dl anticipated errors. Error conditionsareal defined to have negative val ues, so that
some functions can cast and return positive values (e.g. connection 1Ds) and have these values
distinguished from actual errors.

Error RTP_Init(int ticklnterval, int w ndSize);

Thisroutinemust be called before any other RTP routines, and givesimplementationsa
chancetoinitidizetheir datastructuresand perform other start-up tasks. The user suppliesthe
desired network servicing interval, and the size of both the send and receive windows. The
function returnsan error code, (which could be O toindicatethat al went well), and should only
be called once.

Error RTP_Listen(int |ocal Port);

Listens for incoming connection requests on the specified local port, and accepts a
connection request from any destination. Thefunction blocksuntil aconnection isestablished
or anerror occurs. (Thisbehavior isquitedifferent from that of TCP.) Thefunction returnsan
error code or unique connection ID.

Error RTP_Open(int port, char *destNane, I nt destPort);

Opensaconnection between the specified loca port and the named destination machine
and port using athree-way handshake. If por t is0, RTP picksany availableloca port. The
function isblocking, and returnsan error code or unique connection ID. The remote machine

2There are many opportunities for independent projects and extensions as a resullt.

136

CCSC: Northeastern Conference

must have called RTP_Li st en prior tothiscal, or the open request should eventualy fail.

Error RTP_Send(int conNum char *buf, int dataSize);

Sendsthedatain buf along the specified connection. Note that the datamight not actualy
crossthe network until after the next SI GALRMhandler runs. The functionistherefore not
blocking —it may return beforethe datais actually moved acrossthe network —and returnsan
error code, or the number of bytes sent or queued for sending.

Error RTP_Receive(int conNum char *buf, int bufSize);

Accepts a datagram from the RTP layer. If no data is available, the call returns
immediately with areturn value of zero. Otherwisg, it returns an error code or the number of
bytes received.

Error RTP_C ose(int conNum;

Closes a connection using the technique outlined above, and only returns once the task
is accomplished. The function returns an error code (which could be 0 to indicate that

al went well).

Error RTP_PrintStats(int conNum;

Prints the number of explicit ACKs sent and received, the number of NAKs sent and
received, the number of data packets sent and received, and the number of damaged packets
that have arrived.

3.2 Implementation Overview

An RTP implementation must service the network relatively often to ensure that
acknowledgements are sent in atimely manner, incoming datais pulled off of the network, and
packets are periodically sent to keep the connection alive. These “housekeeping” operations
could be performed each time the application callsan RTP routine (e.g. RTP_Send), but
thereare no guaranteesthat an application would make RTP callswith sufficient frequency to
avoidinactivity timeoutsand other difficulties. Instead, studentsregister aSI GALRMhandler
that runs at known intervals to perform these chores.?

The handler-based approach guarantees frequent polling of the network (and sharing of
the CPU between an application and the RTP layer), but introduces complexities for the
students. First, code in the RTP interface routines must take pains to avoid potential race

*Although a separate thread could be used to service the network instead, the
regular nature of handler invocations can also be used as a measure of time.

137

JCSC 16, 4 (May 2001)

conditionswhen updating globa datastructures and variables, asthe handler could run at any
time. More importantly, the handler and the interface routines must often work in concert to
carry out arequest from the gpplication. For example, acdl to RTP_Qpen could immediately
send a connection request to the remote machine, then block until the remaining stages of the
handshake are completed. But if the packet was lost or damaged, it would be the SI GALRM
handler’ sresponsibility to detect the timeout and resend an identical connection request. Many
sudentsgivethe handler respongbility for compl eting the entire handshake and only “ awaken”

the RTP_Qpen call oncethe processis complete (or hasfailed). Students must clearly identify
theresponsbilities of both the handler and the interface routinesto ensure they work together

properly.

4. THE ASSIGNMENT
4.1 Preparation

Currently, the bulk of the networks courseis organized around the project. The early
assgnments aretailored to introduce materiad and techniques required to implement RTP, and
the chaptersin the textbook are covered out of order so asto present transport layer concepts
asquickly aspossble. Thefirgt programming assgnment is presented to sudents during the first
week of the semester with the goal of introducing UNIX signalsand handlers. Studentswrite
an gpplicationthat registersaSI GALRMhandler, specifiesadelay between timer expirations,
and disables the timer after the handler has been invoked a specified number of times.
Meanwhile, the application spinson agloba variableto wait out the required number of handler
invocations.

Inthe second assignment, students become painfully familiar with the detailsof reliable
DataLink layer protocols. In hisbook, Tanenbaum presentsaseries of protocolsof increasing
complexity culminating with protocol p6, which incorporates diding windows, piggybacked
acknowledgements, and negative acknowledgementsfor missing or damaged frames. Usinga
smulator, students run adightly-modified verson of p6 containing abug causing deadlock in
the case of lost or damaged frames. Students must trace the behavior of the smulated protocol
until the source of the deadlock is discovered, and are forced to determine the correct behavior
of the protocol at each step so asto detect anomal ous behavior. (For more information, see
[3].) Later, p6 can be used with very few modifications as the basis of the RTP Transport
Layer protocol.

Students areintroduced to socket programming in the third assignment, wherethey write
asimple client and server. The assignment requires that students map host namesto IP
addresses, open and bind sockets, and send and receive UDP datagrams. Thiscode, aswell,
can be used directly in the RTP project.

4.2 Design Phase

A project aslarge and complex asthe RTP protocol requiresa careful and thoughtful
exploration of designissues, and studentsare required to compl ete adesign before proceeding

138

CCSC: Northeastern Conference

with their implementation. Students are given aspecifications document detailing the behavior
of the RTP protocol and its interface, and an assignment writeup outlining possible
implementation difficultiesand requesting information about specific areas of their proposed
design. In particular, they are asked to list the responsibilities of the SI GALRMhandler, in
order, and to describe the interactions between the handler and the code implementing the
RTP_Open,RTP_Send,andRTP_Recei ve interfaceroutines. Studentsare encouraged
to completeafinite statediagram describing al possiblestatesinwhichther protocol couldfind
itself, and to use these states as away of coordinating the behavior of the handler and the
interface routines.

4.3 Supplied Materials

In addition to the RTP specifications document, students are given avariety of utility
routinesthat they may modify or usedirectly in their implementations. Theseinclude functions
to disableand enableinterrupts (alowing studentsto temporarily disablethe SI GALRMhandler
whilemodifying shared structuresif necessary), anon-blocking routinethat detectsdatawaiting
at asocket, and functionsfor setting and verifying checksums. (Students were asked to write
checksum routines themselvesthefirst semester the project was used, but small errorsin the
checksumming coderesultedinlong and frustrating debugging delaysfor many students. Asthe
checksumming algorithm wasn't centra to the protocol issues, adecision was madeto provide
working checksum codeto all studentsin later semesters.) A timersclassis provided that
implementsacollection of data packet timers multiplexed atop thesingle SI GALRMhandler,
and . h files specifying the packet and header layout are distributed.

Students are a so provided with a ssimple menu-driven test application that runs atop an
RTP implementation, allowing connectionsto be opened and closed and datato be exchanged.
This can either be compiled with their RTP implementations, or with the executablesfor a
working RTP layer that are also distributed. Students can therefore test their projects against
a correct implementation to speed development and debugging.

4.4 Grading

A battery of functiondity testsis used to evauate finished RTP implementations, and the
results determine 70% of a project?s final score. Many of these tests are performed
automatically by atest application that checksfor enforcement of maximum window sizes,
packet payload size, and that proper error responses are returned in cases such as sending or
receiving on aclosed or nonexistent connection. Other tests, most of whichinvolvesendingand
receiving data, are performed manually. Implementations aretested against themselvesand
againg the reference RTP implementation, and are put through their paces on both noisy and
noise-freelines. Program design, organization, and style make up the remaining 30% of the
grade.

139

JCSC 16, 4 (May 2001)

5. EXPERIENCES

Our experienceswith the RTP project have been overwhelmingly positive. Studentshave
comeaway with adeegp understanding of design and implementation issuessurrounding reliable
transmission protocols, aswell as enhanced programming and debugging skills. Implementing
an entire layer of the protocol stack drives home the strengths of the layering approach:
Students were ableto use the services of the layer below?, add functiondlity, and export these
new servicesto an application above—thefind assgnment, in which they write an gpplication
atop RTP, completes the cycle. Actually implementing the three-way handshake and a
(smplified) dosng mechanismsmilarly reinforced lecture materid, particularly when questions
arose about thefiner pointsof thetechniquein genera, and required RTP behavior in particular.

Asan additiond benefit, Sudents gained programming maturity during theimplementation
experience. For many of the students, RTP was the largest software project they had yet
written, and completing the project was asubgtantia accomplishment. (Student implementations
typicaly require 2-3,000 lines of C++ code.) Before the project, none of the students had
worked with sockets, or signals and handlers, and few had worked with state machine-based
designs.

Some of this maturity was obtained through the school of hard knocks, however. The
project can be extremely tricky for studentsto debug, due to the asynchronous nature of the
code. Race conditions and other subtle errors in the collaboration between the SI GALRM
handler and theinterface routines often proved difficult to track down. To make mattersworse,
the project has to be reasonably complete before any of it can be effectively tested and
debugged. In three semesters, no student has ever failed to submit something for evaluation,
but the quality of the submitted materials has varied agreat deal. Almost aquarter of the
projects have received ascore of lessthan 50%°. The majority have completed respectable
implementations, however, and ahandful of students each semester have gone beyond the
requirements and implemented additional functionality.

Encouragingly, course evaluations have shown a high degree of student satisfaction.
Almost dl have pointed to the project asthemaost useful and enriching component of the course,
and recommend the course and the project highly. A common student lament has been that they
did not start early enough®. Thishasbeen addressed in later ssmesterswith closer supervision,
more effective scaretactics, and more aggressive nagging from faculty during the early stages
of the project. Studentsare also now given alist of suggestionsto reduce complications. (For
example, focus on getting RTP_Open to work on noise-free lines, and test just that much

*UDP istechnically atransport-layer protocol, but we consider it a network-layer
service for the purposes of the project.

SThe actual figureis 11 out of 48 (23%). The average score among these 11 was
36%.

*Most of the students responsible for the below-50% scores fall into this category.

140

CCSC: Northeastern Conference

against the reference implementation before proceeding.) Some students have also been
frustrated during the design stage of the project, asthe scope and ramifications of their design
decisonsareoften not yet gppreciated. The design assgnment has been clarified asaresult, and
significantly morelecturetimeisnow spent discussing the project before students begin their
designs.

6. CONCLUSIONS

Thispaper describesacomputer networking project, theimplementation of the Reliable
Transport Protocol (RTP), that gives students hands-on experience with network protocol
concepts and congtruction. Lecture topics such as the protocol layering modd, diding window
protocols, packet formats and headers, techniquesfor establishing and closing connections, and
UDP socketsprogramming ared| driven homeviafirst-hand experience. Studentsgain genera
programming and debugging experience on aredigtic, event-driven, asynchronous gpplication
as well, and draw upon their knowledge of algorithms and data structures during the
implementation. The RTP protocol specification, assignment details, and reference
implementation haveall been improved through three semestersof use, and are available at
WWW. CS. vassar . edu/ ~ri char ds/ RTP. Theauthor would wel comefeedback from
faculty considering the project, and isparticularly interested in arrangementsthat would allow
students at different institutions to communicate via RTP.

7. ACKNOWLEDGEMENTS

Theauthor would like to thank Susan Hert for her val uable feedback on earlier drafts of
this paper, and Professor Larry Landweber at UWJMadison for generoudy sharing the UDP
garbling package.

REFERENCES

[1] IEEE. Carrier sense multipleaccesswith collision detection. 802.3, IEEE, New Y ork,
1985a.

[2] Postel, J. Transmission control protocol. RFC 793, DARPA, September 1981.

[3] Richards, B. Bugsasfeatures: Teaching network protocolsthrough debugging. InProc.
of the Thirty-First ACM SGCSE Technical Symposium on Computer Science Education
(March 2000).

[4] Stevens, W. R. UNIX Network Programming. Prentice Hall, 1990.
[5] Tanenbaum, A. S. Computer Networks. Prentice Hall, 1996.

141

